
https://doi.org/10.1007/s10468-021-10056-8

On Simple-Minded Systems Over
Representation-Finite Self-Injective Algebras

Jing Guo1 ·Yuming Liu2 ·Yu Ye3 ·Zhen Zhang2,4

Received: 18 September 2019 / Accepted: 11 April 2021 /
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
Let A be a representation-finite self-injective algebra over an algebraically closed field k.
We give a new characterization for an orthogonal system in the stable module category A-
mod to be a simple-minded system. As a by-product, we show that every Nakayama-stable
orthogonal system in A-mod extends to a simple-minded system.
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1 Introduction

As an attempt towards a tilting theory for stable equivalences between finite dimensional
algebras, Koenig and Liu [19] introduced simple-minded systems in the stable module
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category A-mod of any finite dimensional algebra A. Roughly speaking, a simple-minded
system over A is a family of objects in A-mod which satisfies orthogonality and a gen-
erating condition. Later, Dugas [12] defined simple-minded systems in any Hom-finite
Krull-Schmidt triangulated category. The two definitions are equivalent in the stable module
category of a self-injective algebra (cf. [8, Section 2.1]). In [9], Coelho Simões introduced
d-simple-minded systems in (−d)-Calabi-Yau triangulated categories for any positive inte-
ger d. There is a recent rise of interests in studying d-simple-minded systems (see, for
example, [10, 11, 15]).

On the other hand, Chan, Koenig and Liu [7] noticed that for a representation-finite
self-injective algebra A, the simple-minded systems in A-mod correspond exactly to the
combinatorial configurations in the Auslander-Reiten quiver of A, a key notion introduced
by Riedtmann [23–25] in the 1980’s in her famous work on classification of representation-
finite self-injective algebras. A similar notion in (−d)-Calabi-Yau triangulated categories
is called (−d)-Riedtmann configuration (see [10]) or (−d)-Calabi-Yau configuration (see
[17]) for a positive integer d. The connection between simple-minded systems and combi-
natorial configurations is quite useful since the combinatorial configurations are often easier
to handle.

In general, it is hard to check the two conditions in the definition of a simple-minded
system. So it is important to find easier characterizations of simple-minded systems. In this
paper, we will give such a characterization of simple-minded systems over representation-
finite self-injective algebras. Before stating our result, we recall some notations and results
from [7]. Let A be an RFS algebra (that is, indecomposable, basic representation-finite
self-injective algebra (� k) over an algebraically closed field k) and S a simple-minded
system in A-mod. Then, according to [7], S is an orthogonal system (see Definition 2.1)
in A-mod (orthogonality condition), the cardinality of S is equal to the number of non-
isomorphic simple A-modules (cardinality condition), and the Nakayama functor on A-mod
permutes the objects of S (Nakayama-stable condition). The main result in this paper says
that the above three conditions are also sufficient for a family of objects in A-mod to be a
simple-minded system.

Theorem 1.1 Let A be an RFS algebra and S a family of objects in A-mod. Then S is a
simple-minded system if and only if S satisfies the following three conditions.

(1) S is an orthogonal system in A-mod.
(2) The cardinality of S is equal to the number of non-isomorphic simple A-modules.
(3) S is Nakayama-stable, that is, the Nakayama functor on A-mod permutes the objects

of S .

There are two main ingredients in the proof of the above theorem. One is the torsion pair
theory studied by Iyama-Yoshino [16] and by Dugas [12]. The other one is the covering the-
ory developed by Riedtmann [23] and by Bongartz-Gabriel [4]. From the proof of Theorem
1.1, we also deduce some new properties of orthogonal systems in A-mod. In particular, we
prove the following extendible property of Nakayama-stable orthogonal systems in A-mod.

Theorem 1.2 Let A be an RFS algebra. Then every Nakayama-stable orthogonal system S
in A-mod extends to a simple-minded system.

This paper is organized as follows. In Section 2, we recall some notions and facts on
torsion pair theory, covering theory and simple-minded systems. In Subsection 3.1, we prove
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our main result Theorem 1.1 and give some applications. Our proof here is based on three
technical lemmas : Lemma 2.5, Lemma 3.3, and Lemma 3.8. The first two lemmas come
from torsion pair theory and the last one relies on several interesting orthogonality properties
in the stable module categories of several classes of RFS algebras (Lemma 3.5 to Lemma
3.7). In Section 3.2, we prove Theorem 1.2 and its corollary.

2 Preliminaries

Throughout this paper, k denotes an algebraically closed field, all algebras are assumed to be
finite dimensional k-algebras with 1. For an algebra A, we denote by A-mod the category of
finite dimensional left A-modules, and by A-mod the stable category of A-mod, that is, the
category with the same class of objects but with morphism spaces HomA(X, Y ) being the
quotient of the ordinary one HomA(X, Y ) by maps factoring through projective modules.

2.1 Torsion Pair Theory

We briefly recall the torsion pair theory on a Hom-finite Krull-Schmidt triangulated k-
category in the sense of Dugas [12]. Let T be a Hom-finite Krull-Schmidt triangulated
k-category with suspension functor [1]. For any families S1,S2 of objects in T , we define
a family of objects

S1 ∗ S2 := {X ∈ T | There is a distinguished triangle S1

−→ X −→ S2 −→ S1[1], S1 ∈ S1, S2 ∈ S2}.
Using the octahedral axiom, it is easy to show that (S1 ∗ S2) ∗ S3 = S1 ∗ (S2 ∗ S3) for
S1,S2,S3 ⊆ T . For a family S of objects in T , we denote (S)0 = {0}, and for any positive
integer n, we inductively define (S)n = (S)n−1 ∗ (S ∪ {0}). (S)n ∗ (S)m = (S)n+m for
any non-negative integers m and n (cf. [12, Lemma 2.3]). Similarly, one can define n(S),
and we have (S)n=n(S). We say that S is extension-closed, if S ∗ S ⊆ S . One denotes the
extension closure of a family S of objects in T as

F(S) :=
⋃

n≥0

(S)n,

which is the smallest extension closed full subcategory of T containing S . Notice that we
identify S with the corresponding full (usually not triangulated) subcategory of T .

Definition 2.1 An object M in T is a stable brick if T (M,M) ∼= k. Moreover, a family S
of stable bricks in T is an orthogonal system if T (M,N) = 0 for all distinct M,N in S .

Lemma 2.2 ([12, Lemma 2.7]) If S ⊆ T is an orthogonal system, then (S)n is closed
under direct summands for each positive integer n ≥ 1. In particular, F(S) is closed under
direct summands.

For any family S of objects in T , we set

S⊥ := {Y ∈ T | T (X, Y ) = 0, ∀X ∈ S},
⊥S := {Y ∈ T | T (Y,X) = 0, ∀X ∈ S}.
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We know that both S⊥ and ⊥S are extension closed subcategories of T as well as closed
under direct summands. We shall denote S⊥ ∩ ⊥S by ⊥S⊥.

Definition 2.3 [12, Definition 3.1] A pair (X ,Y) of full, additive subcategories of T ,
which are closed under direct summands, forms a torsion pair if the following conditions
hold :
(1) T (X ,Y) = 0.
(2) T = X ∗ Y , that is, for each T ∈ T , there exists a distinguished triangle

X
f

�� T
g

�� Y �� X[1] ,

where X ∈ X , Y ∈ Y .

The above distinguished triangle in (2) is called a (X ,Y)-triangle of T . It is easy to
show that for any (X ,Y)-triangle of T , f is a right X -approximation and g is a left Y-
approximation. It is true that for a (X ,Y)-triangle, f is a minimal right X -approximation if
and only if g is a minimal left Y-approximation (cf. [12, Lemma 3.2]). Furthermore, we can
choose a right minimal version of f and this resulting triangle is unique up to isomorphism,
we call it the minimal (X ,Y)-triangle.

In the present paper, we will apply the above torsion pair theory in a special case where
T is the stable category A-mod of a self-injective algebra A. In this case, the suspension
functor is the cosyzygy functor �−1 (sometimes still denoted by [1] if there is no confusion)
and the distinguished triangles in A-mod are induced by short exact sequences in A-mod
(see [14]). Notice that A-mod has Serre functor ν� = ν[−1], that is, for all M,N ∈ A-
mod, we have the natural k-linear isomorphisms : HomA(M,N) ∼= DHomA(N, ν�M),
where D = Homk(−, k) is the usual k-dual functor and ν = DHomA(−, A) is the
Nakayama functor (see [21]). We remind the reader that the Nakayama functor defines a
self-equivalence on A-mod (hence on A-mod).

Now we take an orthogonal system S in A-mod with ν(S) = S and assume that both
(⊥S,F(S)) and (F(S),S⊥) are torsion pairs in A-mod. Let X be an object in A-mod. We
define operators a : T −→ ⊥S, b, c : T −→ F(S) and d : T −→ S⊥ via the minimal
triangles

aX −→ X −→ bX −→ and cX −→ X −→ dX −→
corresponding to these two torsion pairs respectively. Notice that in general these operators
are not functors, see [12, Section 3] for more information.

Lemma 2.4 [12, Lemma 4.3] Assume thatS is an orthogonal system inA-mod with ν(S) =
S . Then ν(F(S)) = F(S). Furthermore, ν(aX) ∼= a(νX) and ν(bX) ∼= b(νX) for all X ∈
A-mod, and similarly for c and d.

Lemma 2.5 [12, Lemma 4.6] Let S be as in Lemma 2.4. For any minimal (⊥S,F(S))-

triangle aY
f−→ Y

g−→ bY −→ and any X ∈ S , we have the following.
(1) The map HomA(g,X) : HomA(bY,X) −→ HomA(Y,X) is an isomorphism.
(2) The map HomA(X, f ) : HomA(X, aY ) −→ HomA(X, Y ) is a monomorphism.
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(3) If Y ∈ S⊥, then aY ∈ ⊥S⊥.

2.2 Covering Theory

The covering of translation quivers was introduced by Riedtmann [22], and it was extended
to covering functors between k-categories by Bongartz and Gabriel [4]. We refer to a brief
introduction on some covering theory from [7].

Following Asashiba [1], we abbreviate (indecomposable, basic) representation-finite
self-injective algebra (� k) over an algebraically closed field k by RFS algebra. Let A be an
RFS algebra, and let s�A be the stable Auslander-Reiten quiver of A. It is known that s�A

has the form Z�/〈στ−r 〉, where � is a Dynkin quiver, Z� is the stable translation quiver
associated to �, τ is the translation of Z� and σ is some automorphism of the quiver Z�

with a fixed vertex. Notice that τ coincides with the AR-translate DT r . According to [2],
the type tpy(A) of an RFS algebra A is defined by tpy(A) := (�, f, t), where f := r/m�

and t is the order of σ . Here m� = n, 2n − 3, 11, 17 or 29 for � = An, Dn,E6, E7 or
E8, respectively. Notice that if n is the number of vertices of �, then nf is the number of
isoclasses of simple A-modules. We remark that m� has the following categorical interpre-
tation (cf. [5, Section 1.1]) : any path of length greater than or equal to m� is zero in the
mesh category k(Z�).

Proposition 2.6 [2, Proposition 1.1] The set of all types of representation-finite self-
injective algebras (� k) is equal to the disjoint union of the following sets.

(a) {(An, s/n, 1) | n, s ∈ N}.
(b) {(A2p+1, s, 2) | p, s ∈ N}.
(c) {(Dn, s, 1) | n, s ∈ N, n ≥ 4}.
(d) {(D3m, s/3, 1) | m, s ∈ N,m ≥ 2, 3 � s}.
(e) {(Dn, s, 2) | n, s ∈ N, n ≥ 4}.
(f) {(D4, s, 3) | s ∈ N}.
(g) {(En, s, 1) | n = 6, 7, 8, s ∈ N}.
(h) {(E6, s, 2) | s ∈ N}.

Recall from [4] and [5] that a representation-finite k-algebra is called standard if A-
ind ∼= k(�A), where k(�A) is the mesh category of the Auslander-Reiten quiver �A of A

and A-ind is the full subcategory of A-mod whose objects are the representatives of the
isoclasses of indecomposable modules. Non-standard algebras are algebras which are not
standard.

Remark 2.7 (cf. [1, 2] and [7, Section 4]) Standard RFS algebras appear in all types and non-
standard RFS algebras appear only in type (D3m, 1/3, 1) for some m ≥ 2. For every non-
standard RFS algebra A, there is a standard RFS algebra of the same type, which is denoted
by As and called the standard counterpart of A. The RFS algebras which correspond to
symmetric algebras are of types {(An, s/n, 1) | s ∈ N, s|n}, {(D3m, 1/3, 1)}, {(Dn, 1, 1) |
n ∈ N, n ≥ 4}, {(En, 1, 1) | n = 6, 7, 8}.

Recall from [1, 24] that if A is standard, then we have that A-ind ∼= k(s�A), where
k(s�A) is the mesh category of the stable Auslander-Reiten quiver s�A and A-ind is the full
subcategory of A-mod whose objects are objects in A-ind. Moreover, there is a covering
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functor F : k(Z�) −→ A-mod. In particular, for e, f, h ∈ Z�, there are the following
bijections :

⊕

Fh=Ff

Homk(Z�)(e, h)∼=Homk(s�A)(Fe, Ff ),
⊕

Fh=Ff

Homk(Z�)(e, h)∼=HomA(Fe, Ff ),

⊕

Fe=Fh

Homk(Z�)(e, f )∼=Homk(s�A)(Fh, Ff ),
⊕

Fe=Fh

Homk(Z�)(e, f )∼=HomA(Fh, Ff ).

In the following two lemmas, we recall the well-known properties on homomorphism
spaces in the mesh category of the stable translation quiver Z�, where � = An or � = Dn.
We use the following enumeration on the vertices of � :

1 �� 2 �� · · · �� n (An),

(2.1)

n

1 �� 2 �� · · · �� n − 2

��

�� n − 1 (Dn).

It is often convenient to write a vertex of Z� as its coordinate (p, q), where p, q are
integers, 1 ≤ q ≤ n and n is the number of vertices of �.

Lemma 2.8 [23, Lemma 2.6.1] For any vertices (p, q) and (r, s) in ZA�, we have

dimk(Homk(ZA�)((p, q), (r, s))) ≤ 1.

In particular, dimk(Homk(ZA�)((p, q), (r, s))) = 1 if and only if p ≤ r < p + q ≤ r + s ≤
p + �.
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�
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�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
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�
�
�
��

�
�
�
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�
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�
�
�
�
���

�
�
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�
�
�
��

�
�

�
�

�
��

(r, 1)

(r, s)

(r + s − �, �)

(r + s − �, � − s + 1)

Given a category C and a functor F : C −→ k-mod, we set Supp(F ) := {X ∈ C |
X is indecomposable andF(X) �= 0}. According to [25, Section 2], for the vertices of ZDn,
we call a vertex (p, q) low, if q ≤ n−2, and high, otherwise. Notice that these terminologies
are still valid for Auslander-Reiten quivers of type {(Dn, s, 1) | n, s ∈ N, n ≥ 4} and type
{(D3m, s/3, 1) | m, s ∈ N, m ≥ 2, 3 � s}.

Lemma 2.9 [25, Proposition 2.1] Let (p, q) be a vertex of ZDn.

(a) If (p, q) is low, we have Supp(Homk(ZDn)((p, q),−)) = {(x, y) : p ≤ x ≤ p+q−1 <

x + y} ∪ {(x, y) : x < p + n − 1 ≤ x + min{y, n − 1} ≤ p + q + n − 2}.
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(b) If (p, q) is high, we have Supp(Homk(ZDn)((p, q),−)) = {(x, y) : y ≤ n − 2, x ≤
p + n− 2 < x + y} ∪ {(x, y) : y ≥ n− 1, p ≤ x ≤ p + n− 2, x + y ≡ p + q mod 2}.
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(p + q − 1, n − 1)(p, n − 1)

(p + q − 1, 1) (p + n − 2, 1)
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(p + n − 2, 1)
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Remark 2.10 (1) According to [25, Proposition 2.1], we have the following.

Supp(Homk(ZDn)(−, (p + n − 2, q))) = Supp(Homk(ZDn)((p, q),−)),

Supp(Homk(ZDn)(−, (p+n−2, n−1)))=Supp(Homk(ZDn)((p, n−1), −)) for n even,

Supp(Homk(ZDn)(−, (p + n − 2, n))) = Supp(Homk(ZDn)((p, n − 1), −)) for n odd.

(2) The second part of the union in Lemma 2.9 (b) means that if (p, q) is high, then high
vertex (x, y) is in Supp(Homk(ZDn)((p, q),−)) when x + y and p + q have the same
parity.

We remark that the mesh category of ZAn (resp. ZDn) can be identified with Db(kAn)-
ind (resp. Db(kDn)-ind), where Db(kAn) (resp. Db(kDn)) denotes the bounded derived
category of the path algebra kAn (resp. kDn). From this point of view, Lemma 2.8 and
Lemma 2.9 describe the homomorphism spaces in Db(kAn) and in Db(kDn) respectively,
and Remark 2.10 (1) is an explicit description of Serre duality in Db(kDn) (cf. [14]).

2.3 Simple-minded system

Definition 2.11 (cf. [12, Definition 2.4, 2.5]) Let A be a self-injective algebra over an
algebraically closed field k. A family of objects S in A-mod is a simple-minded system
(sms for short) if the following two conditions are satisfied :
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(1) (Orthogonality) For any S, T ∈ S , HomA(S, T ) ∼=
{

0 (S �= T ),

k (S = T ).
(2) (Generating condition) F(S) = A-mod.

Remark 2.12 Let A be an RFS algebra and S an orthogonal system in A-mod. Then
according to [19, Theorem 5.6], the generating condition in an sms can be replaced by the
following weak-generating condition : for any indecomposable non-projective A-module X,
there exists some S ∈ S such that HomA(X, S)

�= 0. Indeed, this fact gives the direct connection between sms’s and combinatorial
configurations at least for standard RFS algebras (cf. [7]).

Recall from [7, Section 2, Section 4] that for an RFS algebra A, if S is an sms in A-mod,
then S satisfies the following three conditions.

(1) S is an orthogonal system in A-mod.
(2) The cardinality of the set S is equal to the number of non-isomorphic simple

A-modules.
(3) S is Nakayama-stable, that is, the Nakayama functor ν permutes the elements of S .

Notice that the above condition (1) is obvious, but (2) and (3) are highly nontrivial. In
fact, they are consequences of the following Liftability theorem (cf. [7] Theorem 4.1) : if S
is an sms over RFS algebra A, then there is another RFS algebra B and a derived equivalence
F : Db(B) → Db(A) such that the induced stable equivalence F̃ : B-mod → A-mod maps
simple B-modules into S .

As a comparison, we would like to mention two interesting facts on combinatorial
configurations for a general self-injective algebraA : any combinatorial configuration is
Nakayama-stable (cf. [17, Theorem 6.2]); a combinatorial configuration C is a simple-
minded system if and only if F(C) is functorially finite in A-mod (cf. [10, Proposition
2.13]).

3 A New Characterization for an Orthogonal System to be an sms

3.1 Main Result and its Proof

In this subsection, we show that the three conditions (1), (2) and (3) in last subsection are
sufficient for S to be an sms. That is, we prove the following theorem.

Theorem 3.1 Let A be an RFS algebra and S a family of objects in A-mod. Then S is an
sms if and only if S satisfies the following three conditions.

(1) S is an orthogonal system in A-mod.
(2) The cardinality of S is equal to the number of non-isomorphic simple A-modules.
(3) S is Nakayama-stable, that is, the Nakayama functor ν permutes the objects of S .

The proof of Theorem 3.1 will be given after we prove a technical lemma on orthogonal-
ity in A-mod (Lemma 3.8).
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Remark 3.2 (a) We cannot delete any condition from (1), (2), (3). A counterexample for
deleting (3) comes from the self-injective Nakayama algebra A, where A = kQ/I is
given by the following quiver Q

1

��

2

��

4

��

3

��

with admissible ideal I = rad4(kQ). It is easy to check that S =
⎧
⎨

⎩1,

2
3
4
, 3,

4
1
2

⎫
⎬

⎭
satisfies (1), (2) but not (3), and S is not an sms.

(b) In general, Theorem 3.1 does not hold for representation-infinite self-injective alge-
bras. A counterexample is given by the algebra k[x, y]/(x2, y2). It is a 4-dimensional
symmetric local algebra and its Auslander-Reiten quiver consists of a component con-
taining the simple module and a P1(k)-family of homogenous tubes. We take a module
X on the mouth of a homogenous tube, notice that any homogenous tube has only one
indecomposable module on its mouth. Let S = {X}. It is easy to check that S satis-
fies the above three conditions. However, S is not an sms since F(S) is the additive
closure of all the modules in the homogenous tube which contains X.

(c) It would be interesting to know whether Theorem 3.1 is false for every representation-
infinite algebra.

The main tools in proving Theorem 3.1 are torsion pair theory and covering theory. One
result we need from torsion pair theory is the following lemma, which is a special case of
[16, Proposition 2.3 (1)].

Lemma 3.3 Let A be a self-injective algebra and S an orthogonal system in A-mod. If the
subcategory F(S) is functorially finite in A-mod, then both (⊥S,F(S)) and (F(S),S⊥)

are torsion pairs in A-mod.

Remark 3.4 The condition that F(S) is functorially finite in Hom-finite, Krull-Schmidt
triangulated k-categories is very useful and applied in a number of recent works (cf. [10, 11,
18]). The condition that F(S) is functorially finite in A-mod clearly holds for RFS algebras.
It would also be interesting to find applications of Lemma 3.3 for representation-infinite
algebras.

We now prove three lemmas (Lemma 3.5 to Lemma 3.7) on orthogonality properties in
the stable categories of several classes of RFS algebras, based on the description of supports
in mesh categories of ZAn,ZDn and the covering theory in [5, 23, 25] and [24]. We shall
freely switch between nonzero indecomposable modules over RFS algebras and vertices in
the corresponding mesh category k(Z�), where � is a Dynkin quiver.

Lemma 3.5 Let A be an RFS algebra of type (A2p+1, s, 2), Dn or En (except type
(D3m, 1/3, 1) for some m ≥ 2). Then every indecomposable module X is a stable brick in
A-mod.
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Proof Recall that under our assumptions all algebras are standard and we can identify A-
ind with k(s�A) ∼= k(Z�)/〈στ−m�f 〉. Let X be an indecomposable module in A-mod and
G the infinite cyclic group generated by στ−m�f . From covering theory we know that

HomA(X,X) = Homk(s�A)(X,X) ∼=
⊕

g(E)=X,g∈G

Homk(Z�)(E, Y ).

Let �(X,X) be the minimal length of all the nontrivial paths from E to X in k(Z�), where
E varies in Z� and satisfies g(E) = X for some g ∈ G. For a given vertex X, in the proof
below we will see that the vertex E corresponding to the minimal length is unique. We claim
that �(X,X) is greater than m� and therefore Homk(Z�n)(E,X) = 0.

We first consider the case {(D3m, s/3, 1) | m, s ∈ N, m, s ≥ 2, 3 � s}. In this case
f = s/3 and k(s�A) ∼= k(ZD3m)/〈τ−s(mD3m

)/3〉 = k(ZD3m)/〈τ−s(2m−1)〉. It follows that
any E with g(E) = X for some g ∈ G has the form τ−sz(2m−1)(X) for some integer z. Now
it is easy to see that �(X,X) is 2s(2m − 1) and it is greater than mD3m

= 2 × (3m) − 3,
where s ≥ 2.

For the other cases, f is always a positive integer and k(s�A) ∼= k(Z�)/〈στ−m�f 〉. By
[2, Proposition 2.1], for type An, Dn or En, the automorphism σ of Z� is induced from
some automorphism of

−→
� (under the choice of orientation on � given in [2, Section 2]). For

the convenience of the reader, we list the orientation on � used in [2, Section 2] according
to the type of �.

1 2�� · · ·�� p�� p + 1�� �� p + 2 �� · · · �� n

(
−→
An, n = 2p + 1, p ∈ Z),

n

1 2�� · · ·�� n − 2�� ��

��

n − 1 (
−→
Dn, n ≥ 4),

n

1 2�� 3 ����

��

· · · �� n − 1 (
−→
En, n = 6, 7, 8).

We define a
−→
� -line to be a set of vertices of the form τ z(

−→
�) in Z� for some z ∈ Z.

Therefore στ−m�f (E) is in the same
−→
� -line with τ−m�f (E) in k(Z�). For a given X

in a
−→
� -line

−→
� , the unique vertex E corresponding to the minimal length lies in

−→
� -line

τm�f (
−→
�). It is easy to check case by case that the length of any path from a vertex in

τm�f (
−→
�) to X is greater than or equal to 2f m� − (n− 1), which is again greater than m�.

We illustrate the result with the case {(A2p+1, s, 2) | p, s ∈ N} in the picture below.
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(−p, 1) (0, 1)

(0, 2p + 1)

(−(2p+1)s, 1)

(−(2p + 1)s, 2p + 1)

((2p+1)s, 1) (2(2p+1)s, 1)((2p + 1)s − p, 1)

((2p + 1)s, p + 1)(0, p + 1)

((2p + 1)s, 2p + 1)

We only need to show that HomA((0, i), (0, i)) ∼= k for vertex (0, i) for each 1 ≤ i ≤
2p + 1, since any other vertex can be obtained by the power of self-equivalence τ of A-
mod. If we assume that (0, i) is in

−→
� -line for 1 ≤ i ≤ 2p + 1, then στm�f ((0, i)) =

(−(2p + 1)s, 2p + 2 − i) and the vertex in στm�f (
−→
� )-line is of the form (−(2p + 1)s, j)

for 1 ≤ j ≤ 2p + 1. It is easy to see that �((0, i), (0, i)) is the length of path from (−(2p +
1)s, 2p + 2 − i) to (0, i) in k(ZA2p+1), it is greater than or equal to the length of path from
(−(2p + 1)s, 2p + 2 − i) to (0, p + 1) in k(ZA2p+1), which is 2(2p + 1)s − |p + 1 − i|.
Since 2(2p + 1)s − |p + 1 − i| ≥ 2(2p + 1)s − 2p > 2p + 1, �((0, i), (0, i)) > 2p + 1,
where |a| is the absolute value of a number a.

Summarizing the above discussion, in all cases we have HomA(X,X) ∼= Homk(Z�)

(X,X) ∼= k.

Lemma 3.6 Let A be an RFS algebra of type (A2p+1, s, 2), Dn or En (except type
{(D3m, s/3, 1) | m, s ∈ N,m ≥ 2, 3 � s}). Then the ν-orbit Oν(X) of any indecomposable
module X is an orthogonal system in A-mod.

Proof We first note that k(s�A) ∼= k(Z�)/〈στ−m�f 〉. Let X, Y be indecomposable mod-
ules in A-mod and G the infinite cyclic group generated by στ−m�f . From covering theory,
we have

HomA(X, Y ) = Homk(s�A)(X, Y ) ∼=
⊕

g(E)=X,g∈G

Homk(Z�)(E, Y ).

Let �(X, Y ) be the minimal length of all the nontrivial paths from E to Y in k(Z�), where
E varies in Z� and satisfies g(E) = X for some g ∈ G. According to the result in [6,
Proposition 1.5 and 1.6], we know that the Nakayama functor ν ∼= τ−m� in k(Z�) . It
follows that ν(X) ∼= τ−m�(X) in k(Z�)/〈στ−m�f 〉. Any E with g(E) = ν(X) has the
form σzτ−m�(zf +1)(X) for some integer z, notice that στ = τσ in k(Z�).

Under the above notations, we now show that the ν-orbit Oν(X) of X is an orthogonal
system in A-mod. There are two cases to be considered. For the case of symmetric algebras,
we know that ν ∼= id , by Lemma 3.5, the ν-orbit Oν(X) of X is an orthogonal system.
For the other cases, we show that HomA(νi(X), νj (X)) = 0 for integers i, j, where i �=
j, 0 ≤ i, j < m and m is the order of ν for X. It is easy to see that �(νi(X), νj (X)) =
2(j − i)m� for i �= j , which is greater than m�, where j − i ≡ j − i mod n. Therefore
HomA(νi(X), νj (X)) = 0. It follows that the ν-orbit Oν(X) of any indecomposable module
X is an orthogonal system in A-mod.

We illustrate the above result through the case {(Dn, s, 2) | n, s ∈ N, s ≥ 2, n > 4} in
the picture below.
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((0, n − 1)

(0, n)

(0, 1)

((2n − 3)i, n − 1)

((2n − 3)i, n)

((2n − 3)i, 1)

((2n − 3)j, n − 1)

((2n − 3)j, n)

((2n − 3)j, 1)

((2n − 3)s, n − 1)

((2n − 3)s, n)

((2n − 3)s, 1)

We only need to show that the ν-orbit Oν((0, p)) of any indecomposable module (0, p)

is an orthogonal system in A-mod for all 1 ≤ p ≤ n, since any other vertex can be obtained
by the power of self-equivalence τ of A-mod. If 1 ≤ p ≤ n − 2, then στ−mDnf (0, p) =
((2n − 3)s, p), στ−mDnf (0, n) = ((2n − 3)s, n − 1) and στ−mDnf (0, n − 1) = ((2n −
3)s, n). It is also clear that νq((0, p)) = ((2n − 3)q, p) for 1 ≤ p ≤ n and q ∈ Z,
σνs((0, n)) = ((2n − 3)s, n − 1) and σνs((0, n − 1)) = ((2n − 3)s, n). We can see that
�(νi((0, p)), νj ((0, p))) = 2(j − i)(2n − 3) for i �= j , 0 ≤ i, j < s and 1 ≤ p ≤ n,

which is greater than 2n − 3. Therefore HomA(νi((0, p)), νj (0, p))) = 0, it follows that
the ν-orbit Oν((0, p)) is an orthogonal system in A-mod.

Lemma 3.7 Let A be a standard RFS algebra of type {(D3m, s/3, 1) | m, s ∈ N, m ≥ 2, 3 �

s} and let X = (p, q) be a vertex in s�A for some integers p, q, where 1 ≤ q ≤ 3m. Then
we have the following.

(1) If 1 ≤ q < m or q ≥ 3m − 1, then X is a stable brick.
(2) If 1 ≤ q < m or q ≥ 3m − 1, then the ν-orbit Oν(X) of X is an orthogonal

system.
(3) If m ≤ q < 3m − 1, then the ν-orbit Oν(X) of X is not an orthogonal system.

Proof Let G be the infinite cyclic group generated by τ s(2m−1). Note that k(s�A) ∼=
k(ZD3m)/〈τ−s(2m−1)〉. Let Y be a vertex in s�A. From covering theory, we have

HomA(X, Y ) = Homk(s�A)(X, Y ) ∼=
⊕

g(E)=X,g∈G

Homk(ZD3m)(E, Y ).

Let �(X, Y ) be the minimal length of all the nontrivial paths from E to Y in k(ZD3m), where
E varies in ZD3m and satisfies g(E) = X for some g ∈ G.

(1) There are two cases to be considered. For the case {(D3m, s/3, 1) | m, s ∈ N, m, s ≥
2, 3 � s}, by Lemma 3.5, X is a stable brick in s�A for all 1 ≤ q ≤ 3m.

For the other case {(D3m, 1/3, 1)} for some m ≥ 2. We first assume that q ≥ 3m−1, that
is, X is a high vertex, which is denoted by (p, 3m − 1) (resp. (p, 3m)) for some integer p.
It is sufficient to show that except the trivial path from X to X, any path from the above E

to X is zero in k(ZD3m). Since s = 1, we know that the above E is of the form τ z(2m−1)(X)

for some integer z. There are three subcases to be considered.
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(0, 3m − 1)

(0, 3m)

(0, 1)

X = (0, m − 1) (2m − 1, m)

(2m − 1, 3m − 1)

(2m − 1, 3m)

(2m − 1, 1)

(2(2m − 1), 3m)

(2(2m − 1), 3m − 1)

(2(2m − 1), 1)

(−(2m − 1), 3m − 1)

��(−(2m − 1), 3m)

(−(2m − 1), 1)

(i) If z is a negative integer, it is clear that Homk(ZD3m)(E,X) = 0.
(ii) If z ≥ 2, then �(X,X) is greater than or equal to 4(2m − 1), which is greater than

mD3m
= 2 × (3m) − 3. It follows that Homk(ZD3m)(E,X) = 0.

(iii) If z = 1, then E = (−2m + 1 + p, 3m − 1) (resp. (−2m + 1 + p, 3m)). Since p and
−2m + 1 + p do not have the same parity and by the description of support of a high
vertex, Homk(ZD3m)(E,X) = 0.

Then we assume that 1 ≤ q < m. From the description of the support of a low vertex, it is
easy to see that τ z(2m−1)(X) is not in Supp(Homk(ZD3m)(−, (p, q))) for any nonzero integer
z. It follows that HomA(X,X) ∼= Homk(ZD3m)(X,X) ∼= k.

(2) According to the result in [6, Proposition 1.5 and 1.6], we know that the Nakayama
functor ν ∼= τ−m� in k(Z�), where � means Dynkin quiver An, Dn or En. Since k(s�A) ∼=
k(ZD3m)/〈τ−s(2m−1)〉, ν(X) ∼= τ−mD3m (X) ∼= τ (zs−3)mD3m

/3(X) = τ (zs−3)(2m−1)(X) in
k(ZD3m)/〈τ−s(2m−1)〉 for all integers z. Moreover, since 3 � s, there is a smallest posi-
tive integer e such that νe ∼= τ−(2m−1) in k(ZD3m)/〈τ−s(2m−1)〉. It follows that Oν(X) =
{X, νe(X), · · · , ν(s−1)e(X)} = {X, τ−(2m−1)(X), · · · , τ−(s−1)(2m−1)(X)}.

There are two cases as follows. For the case {(D3m, 1/3, 1)} for some m ≥ 2, A is a
symmetric algebra and ν ∼= id . Since X is stable brick for 1 ≤ q < m and q ≥ 3m − 1, the
ν-orbit Oν(X) of X is an orthogonal system in s�A.

For the other case {(D3m, s/3, 1) | m, s ∈ N, m, s ≥ 2, 3 � s}. We show that
HomA(νi(X), νj (X)) = 0 for any i �= j , where 0 ≤ i, j < s. There are two subcases to be
considered.

(i) Let R1 := {(i, j)|i �= j, �(νi(X), νj (X)) = 2(2m − 1)}. Since νe ∼= τ−(2m−1), R1
is not an empty set. Similarly to the proof of (1) of the case {(D3m, 1/3, 1)} for some
m ≥ 2, we know that HomA(νi(X), νj (X)) = 0 for any (i, j) in R1.

(ii) Let R := {(i, j) | i, j integers, i �= j, 0 ≤ i, j < s} and R′=R\R1. It is easy to see
that �(νi(X), νj (X))

≥ 4(2m − 1) for any (i, j) in R′, which is greater than 6m − 3. It follows that
HomA(νi(X), νj (X)) = 0 for any (i, j) in R′.

(3) From the description of the support of a low vertex, if m ≤ q < 3m − 1, then
νe(X) = τ−(2m−1)(X) = (2m − 1 + p, q) ∈ Supp(Homk(ZD3m)((p, q),−)). It follows that
X is not a stable brick for the case {(D3m, 1/3, 1)} and HomA(X, νe(X)) � 0 for the case
{(D3m, s/3, 1) | m, s ∈ N, m, s ≥ 2, 3 � s}.

We now use the above three lemmas to prove the following result, which plays a key role
in proving Theorem 3.1.

Lemma 3.8 Let A be an RFS algebra and S a family of objects in A-mod. If S satisfies
the three conditions in Theorem 3.1, then ⊥S⊥ = {0}.
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Proof First we choose a
−→
� -line in Z� for � of types An and Dn as the figure (2.1) in

Section 2.2. Notice that the above
−→
� -lines are different from the

−→
� -lines in Lemma 3.5.

Let TX be the set of modules in the
−→
� -line containing X in stable Auslander-Reiten quiver

s�A, and let TC=∪c∈C Tc for a set C of objects in A-ind. Given a set C of modules and an
indecomposable module Y in A-mod, we say that C labels TY if any object of TY is not in
⊥C⊥, moreover, a module X in A-mod labels TY if any object of TY is not in ⊥X⊥. There
are four cases to be considered.

Case 1. Type (An, s/n, 1) for n, s ∈ N.
Notice that A is a self-injective Nakayama algebra in this case. The stable Auslander-

Reiten quiver s�A is of the form ZAn/〈τ−s〉 for type (An, s/n, 1) for n, s ∈ N. Notice
that s is the number of simple modules. We know that the set of vertices in s�A is the

union of s
−→
An-lines. From the description of support of any indecomposable module in A-

mod (see Lemma 2.8), for an object X in S , any object of TX is in Supp(HomA(X, −)) ∪
Supp(HomA(−, X)). Since S is an orthogonal system, the s objects in S label s different−→
An-lines, it follows that TS covers the whole stable Auslander-Reiten quiver of A, then
⊥S⊥ = {0} for this type.

Case 2. Type (D3m, s/3, 1) for m, s ∈ N, m ≥ 2, 3 � s.
We note that the stable Auslander-Reiten quiver s�A is of the form ZD3m/〈τ−(2m−1)s〉

for the type {(D3m, s/3, 1) | m, s ∈ N, m ≥ 2, 3 � s}, so the set of vertices in s�A is the

union of (2m − 1)s different
−−→
D3m-lines. We have the following claim.

Claim: There is precisely one ν-orbit of a high vertex in S . (�)
Indeed, by Lemma 3.7, any low vertex (p, q) with m ≤ q < 3m − 1 is not in S . Sup-

pose that all objects in S are not high vertices. Therefore any vertex Z is of the form (p, q)

with p, q integers, 1 ≤ q < m. For a vertex Z = (p, q) with 1 ≤ q < m, from the descrip-
tion of support of a low vertex, we know that TZ and TZ1 are in Supp(HomA(−, Z)) ∪
Supp(HomA(Z,−)), where Z1 = (p+q−3m+1, 1) (see the picture below). Therefore the
vertex Z labels TZ and TZ1 . Since 2m− 1 � p − (p + q − 3m+ 1), TZ and TZ1 are different−−→
D3m-lines in s�A. And since S is an orthogonal system, ms objects in S label 2ms different−−→
D3m-lines in s�A. It contradicts the fact that s�A only has (2m − 1)s different

−−→
D3m-lines.

Therefore by Lemma 3.7, there is at least one ν-orbit of high vertex in S .
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��Z = (p, q)

Z1 = (p + q + 1 − 3m, 1)

We assume that one of the high vertices is given by X = (p, 3m − 1) (resp. (p, 3m)) for
some integer p. From the proof of Lemma 3.7, there is a smallest positive integer e such that
νe ∼= τ−(2m−1), therefore νe(X) = (2m−1+p, 3m−1) (resp. (2m−1+p, 3m)). Since p

and 2m−1+p do not have the same parity and by the description of support of a high vertex,
any high vertex between X and νe(X) in s�A, which is (k, 3m − 1) or (k, 3m) with p <

k < 2m − 1 + p for some integer k, is in Supp(HomA(X, −)) ∪ Supp(HomA(−, νe(X))).
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Suppose now that there is a ν-orbit Oν(W) of a high vertex W in S\Oν(X). Then there is
a high vertex W ′ in Oν(W) which is between X and νe(X) in s�A. It is a contradiction.
Hence there is precisely one ν-orbit of a high vertex in S .

Now we show that ⊥S⊥ = {0}. It suffices to show that the ms objects in S label (2m−1)s

different
−−→
D3m-lines in s�A. Let Oν(X) be the only ν-orbit for high vertex X = (p, 3m)

(resp. (p, 3m − 1)) for some integer p in S . Since the number of elements in Oν(X) is s,
the number of low vertices in S is (m − 1)s. From the proof of the first half part of (�),
(m − 1)s low vertices label 2(m − 1)s different D3m-lines in s�A. From the proof of the
second half part of (�), we have HomA(X′, νe(X)) �= 0 by the covering theory and the
description of support of a high vertex, where X′ = (p, 3m) (resp. (p, 3m − 1)). There-
fore X′ ∈ Supp(HomA(−, νe(X))), and Oν(X) labels TX , we can see that the s objects in

Oν(X) label s different
−−→
D3m-lines in s�A. Since S is an orthogonal system, the s

−−→
D3m-lines

corresponding to the ν-orbit for a high vertex X and the 2(m−1)s
−−→
D3m-lines corresponding

to low vertices are different. Therefore ⊥S⊥ = {0}.
Case 3. For the other types in standard case.
We assume that ⊥S⊥ �= {0}. Take a nonzero indecomposable module M ∈ ⊥S⊥, and

let S1 := S ∪ {Oν(M)}. By Lemma 3.6, S1 is a Nakayama-stable orthogonal system in A-
mod. If ⊥S1

⊥ �= {0}, then we repeat the above step. Since A is of finite representation type,
there is a positive integer p such that ⊥S⊥

p = {0}. In particular, Sp is a Nakayama-stable

orthogonal system containing S properly in A-mod. By Lemma 3.3, both (⊥Sp,F(Sp))

and (F(Sp),S⊥
p ) are torsion pairs. Let Y be an object in A-mod. Consider a minimal

(⊥Sp,F(Sp))-triangle,

aY −→ Y −→ bY −→ aY [1].

Suppose that 0 �= Y ∈ S⊥
p , by Lemma 2.5, aY ∈ ⊥S⊥

p = {0}. Therefore aY = 0 and

Y ∼= bY ∈ F(Sp). Since Y ∈ S⊥
p , HomA(Y, Y ) = 0, then Y = 0, it is a contradiction.

Since (F(Sp), S⊥
p ) is a torsion pair, F(Sp) = A-mod and Sp is an sms. By the necessary

conditions on S to be an sms from Subsection 2.3, the number of objects of Sp must be the
number of non-isomorphic simple modules. Then Sp = S and it contradicts our assumption
Sp � S . Hence ⊥S⊥ = 0.

Case 4. Type (D3m, 1/3, 1) (m ≥ 2) in non-standard case.
By Remark 2.7, for a non-standard RFS algebra A of type (D3m, 1/3, 1), there is a

standard counterpart As with the same type. Recall from [4, Proposition 5.1] that since A

representation-finite, there is an isomorphism F : k(�A) → Gr(A-ind) which is the iden-
tity on the objects, where Gr(A-ind) is the associated graded category (cf. [4, Section 5])
of A-ind. Notice that by the construction of Hom-space over Gr(A-ind), it is clear that for
M, N ∈ A-ind,

dimk HomA-ind(M,N) = dimk HomGr(A-ind)(M,N).

Let P (resp. Q) be the full subcategory of k(�A) (resp. Gr(A-ind)) consisting of projec-
tive objects. Since F preserves projective objects, the induced functor from P to Q is an
isomorphism. We can deduce that k(�A)/P = k(s�A) → Gr(A-ind) = Gr(A-ind)/Q
induced by F is an isomorphism. Since s�As is isomorphic to s�A as translation quiver,
k(s�As )

∼= k(s�A). Thus

As-ind ∼= k(s�As )
∼= k(s�A) ∼= Gr(A-ind),
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therefore Hom-space of any two objects in As-ind is isomorphic to the corresponding Hom-
space in Gr(A-ind). Notice that for X, Y ∈ A-ind,

dimk HomA-ind(X, Y ) = dimk HomGr(A-ind)(X, Y ).

It follows that there is a one to one correspondence between orthogonal systems in A-ind
and As-ind. Hence ⊥S⊥ = {0}.

Proof of Theorem 3.1 Necessity is clear from Subsection 2.3, so now we assume that S
satisfies the conditions (1), (2) and (3). Since S is an orthogonal system, by Lemma 3.3,
both (⊥S,F(S)) and (F(S),S⊥) are torsion pairs. Let Y be an object in A-mod. Consider
a minimal (⊥S,F(S))-triangle,

aY −→ Y −→ bY −→ aY [1].
Suppose that 0 �= Y ∈ S⊥, by Lemma 2.5, aY ∈ ⊥S⊥. According to Lemma 3.8, aY = 0
and Y ∼= bY ∈ F(S). Since Y ∈ S⊥, this implies that HomA(Y, Y ) = 0, and so Y = 0,
it is a contradiction, therefore S⊥ = {0}. Since (F(S), S⊥) is a torsion pair, we have
F(S) = A-mod and therefore S is an sms.

We have the following immediate consequence from the proof of Theorem 3.1.

Corollary 3.9 Let A be an RFS algebra and S a Nakayama-stable orthogonal system in
A-mod. If ⊥S⊥ = {0}, then S is an sms.

3.2 Extendible Nakayama-stable Orthogonal Systems

In this subsection, we prove the following extendible property of Nakayama-stable orthog-
onal systems for RFS algebras.

Theorem 3.10 Let A be an RFS algebra. Then every Nakayama-stable orthogonal system
S in A-mod extends to an sms.

Proof This is a consequence of the following three lemmas : 3.11, 3.12, 3.13. �

Lemma 3.11 Let A be an RFS algebra of type (A2p+1, s, 2), Dn (except {(D3m, s/3, 1)

with m, s ∈ N,m ≥ 2, 3 � s}) or En. Then every Nakayama-stable orthogonal system S in
A-mod extends to an sms.

Proof By Corollary 3.9, if ⊥S⊥ = {0}, then S is an sms. Otherwise ⊥S⊥ �= {0}, take a
nonzero indecomposable module M ∈ ⊥S⊥. Let S1 := S ∪ {Oν(M)}. By Lemma 3.6,
S1 is a Nakayama-stable orthogonal system in A-mod. If ⊥S1

⊥ = {0}, then S1 is an sms.
Otherwise ⊥S1

⊥ �= {0}, and we can similarly get a Nakayama-stable orthogonal system S2
containing S1 properly. Repeat the above process, since A is of finite representation type,
there is a positive integer q such that ⊥Sq

⊥ = {0}, and Sq is an sms.

The next lemma deals with RFS algebras of type {(An, s/n, 1) | n, s ∈ N}, that is, the
self-injective Nakayama algebras. We first recall some notations and results on self-injective
Nakayama algebras (cf. [3, Section V]).
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The self-injective Nakayama algebra A with s simple modules and Loewy length n + 1
is defined by the following quiver Q

1

��

2

		

s

��

· · ·

��

with admissible ideal I = radn+1(kQ). Notice that if A is symmetric Nakayama, then
n = ms for some positive integer m. Let X1, X2, · · · , Xs be all the simple A-modules. Then
τXi = Xi+1, where τ is the AR-translate and i + 1 denotes the positive integer in {1, . . . , s}
with i + 1 ≡ i + 1 mod s. Notice that any indecomposable A-module M is uniserial and
completely determined up to isomorphism by its socle soc(M) and its Loewy length �(M).
We denote an indecomposable A-module M by Xi(m), if soc(M) is isomorphic to Xi and
�(M) is m. We set Xi(0) = 0 for all 1 ≤ i ≤ s. It is easy to verify that if A is symmetric
Nakayama, then M is a stable brick in A-mod if and only if �(M) ≤ s or n + 1 − s ≤
�(M) ≤ n, where the second inequality n + 1 − s ≤ �(M) ≤ n is a consequence of the
corresponding homomorphism in A-mod factoring through a projective-injective module.

From the picture of the AR-quiver �A of the above self-injective Nakayama algebra A

(∼= ZAn+1/〈τ−s〉), we can easily read the following short exact sequence in A-mod (for
1 ≤ i ≤ s, 0 < k ≤ r ≤ n and 1 ≤ j ≤ n + 1 − r) :

0 → Xi(r)

(
ε1
π1

)

−−−→ Xi(r + j) ⊕ τ−k(Xi(r − k))

(
π2, ε2

)

−−−−−→ τ−k(Xi(r − k + j)) → 0, (1)

where εm, πm for m ∈ {1, 2} are the compositions of irreducible maps in the sectional paths
of �A. The sequence (3.1) induces the following non-split triangle in A-mod :

Xi(r)

(
ε1

π1

)

−−−→ Xi(r + j) ⊕ τ−k(Xi(r − k))

(
π2, ε2

)

−−−−−→ τ−k(Xi(r − k + j)) → �−1(Xi(r)).
(2)

Notice that in the above triangle, the Loewy lengths of all modules are less than or equal to
n+1, and we treat Xi(n+1) = 0 in A-mod for each i since Xi(n+1) is an indecomposable
projective-injective module.

Lemma 3.12 Let A be an RFS algebra of type {(An, s/n, 1) | n, s ∈ N} (that is, A is a
self-injective Nakayama algebra with s simple modules and Loewy length n + 1) and S a
Nakayama-stable orthogonal system in A-mod. Then S extends to an sms.

Proof Let A be as above and B be the symmetric Nakayama algebra with e simple mod-
ules and Loewy length n + 1, where e is the greatest common divisor of s and n. Then
there is a covering of stable translation quivers π : s�A −→ s�B

∼= s�A/〈ν〉 (where ν is the
Nakayama automorphism of s�A), which induces a covering functor F : A-mod −→ B-
mod (cf. [13, Lemma 4.15]). Consequently, if S is an orthogonal system in B-mod, then
S is an sms of B-mod if and only if F−1(S) is an sms of A-mod (cf. [13, Lemma 4.15]).
Therefore, without loss of generality, we can assume that A is a symmetric Nakayama alge-
bra and n = ms. If m = 2, then all indecomposable modules are stable bricks. By the proof
of Corollary 3.11, S extends to an sms. Therefore we can assume that m > 2.
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If ⊥S⊥ = {0}, then by Corollary 3.9, S is an sms.
Otherwise ⊥S⊥ �= {0}, we can take a nonzero indecomposable module Xi(as + b) ∈

⊥S⊥ for some positive integers 0 ≤ a ≤ m−1 and 1 ≤ b ≤ s. If Xi(as+b) is a stable brick,
that is, a = 0 and 1 ≤ b ≤ s (or a = m−1 and 1 ≤ b ≤ s), then let S1 := S∪{Xi(as+b)}.

If Xi(as + b) is not a stable brick, then 1 ≤ a ≤ m − 2 and 1 ≤ b ≤ s, and there are two
cases to be considered.

Case 1. n ≥ 2as + b. Consider the following triangle

Xi(as + b)

(
ε1

π1

)

−−−→ Xi(2as + b) ⊕ Xi(b)

(
π2, ε2

)

−−−−−→ Xi(as + b) → �−1(Xi(as + b)) (3)

by taking r = as + b, k = as and j = as in Eq. 2. We know that Xi(b) is a stable
brick. Apply HomA(S,−) and HomA(−, S) for all S ∈ S to the triangle (3), we get that
Xi(b) ∈ ⊥S⊥. Let S1 := S ∪ {Xi(b)}.

Case 2. n < 2as + b. Consider the following triangle

Xi(as + b)

(
ε1

π1

)

−−−→ Xi(n − s + b) ⊕ Xi((2a + 1)s − n + b)

(
π2, ε2

)

−−−−−→ Xi(as + b)

→ �−1(Xi(as + b))

by taking r = as + b, k = n − (a + 1)s and j = n − (a + 1)s in Eq. 2. Notice that
(2a +1)s −n+b > s +1 when n < 2as +b. Similarly to Case 1, we get that Xi(n− s +b)

is a stable brick and Xi(n − s + b) ∈ ⊥S⊥. Let S1 := S ∪ {Xi(n − s + b)}.
From the above discussion, in any case we get a Nakayama-stable orthogonal system S1

containing S properly. Repeat the above process, since A is of finite representation type,
there is a positive integer q such that ⊥Sq

⊥ = {0}. By Corollary 3.9, Sq is an sms.

The last lemma deals with the remaining RFS algebras, that is, the RFS algebras of type
(D3m, s/3, 1) with m ≥ 2, 3 � s.

Lemma 3.13 Let A be an RFS algebra of type {(D3m, s/3, 1) | m ≥ 2, 3 � s} and S a
Nakayama-stable orthogonal system in A-mod. Then S extends to an sms.

Proof By covering theory and the standard-non-standard correspondence (cf. [7, Section 4]
and the proof of Lemma 3.8), we only need to consider the standard RFS algebras of type
(D3m, 1/3, 1). Notice that in this case the algebras are symmetric and the orthogonal sys-
tems in A-mod are automatically Nakayama-stable. Now suppose that A is an RFS algebras
of type (D3m, 1/3, 1) and S is an orthogonal system in A-mod. Then the stable AR-quiver
s�A has the form ZD3m/〈τ−(2m−1)〉 and the stable category A-mod is determined by the
mesh category k(s�A).

In the following proof, we often identify the indecomposable objects in A-mod with
vertices in s�A. We first show that if S contains a high vertex S0, then S extends to an sms.
Without loss of generality, let S0 = (1, 3m) be a high vertex in S . By the description of
support of a high vertex in k(ZD3m),
⊥S⊥

0 = {(i, j) | m + 1 ≤ i ≤ 2m − 1, i + j ≤ 2m} ∪ {(i, j) | 2 ≤ i ≤ m − 1, i + j ≤ m}.
It follows that if X = (i, j) is in ⊥S⊥

0 , then we have 1 ≤ j < m. By Lemma 3.7, all objects
in ⊥S⊥

0 are stable bricks, it follows that all objects in ⊥S⊥ are all stable bricks. Similarly to
the proof of Lemma 3.11, S extends to an sms.
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Next we claim that any orthogonal system S in A-mod extends to an orthogonal system
which contains a high vertex. We can assume that S does not contain any high vertex. If
⊥S⊥ = {0}, by Corollary 3.9, then S is an sms. By Case 2 of Lemma 3.8, S contains a
unique high vertex, which is a contradiction. Therefore ⊥S⊥ �= {0} and we consider two
cases.

Case 1. All indecomposable objects in ⊥S⊥ are stable bricks. Similarly to the proof of
Lemma 3.11, we can extend S to an sms with a unique high vertex.

Case 2. There is an indecomposable object X in ⊥S⊥ which is not a stable brick. Without
loss of generality, we can assume that X = (1, t) for some m ≤ t < 3m − 1.

By the description of support of vertex in k(ZD3m), there are three subcases to be
considered (where S0 = (1, 3m)) :

(i) If m + 1 ≤ t ≤ 2m − 1, then ⊥X⊥ = ⊥S⊥
0 \ ({(i, j) | t + 1 ≤ i + j ≤ 2m,m + 1 ≤

i ≤ t} ∪ {(i, j) | t − m + 2 ≤ i + j ≤ m, 2 ≤ i ≤ t − m + 1}).
(ii) If 2m + 1 ≤ t ≤ 3m − 2, then ⊥X⊥ = ⊥S⊥

0 \ ({(i, j) | t − 2m + 2 ≤ i + j ≤ m, 2 ≤
i ≤ t − 2m + 1} ∪ {(i, j) | t − m + 2 ≤ i + j ≤ 2m, m + 1 ≤ i ≤ t − m + 1}).

(iii) If t = m or 2m, then ⊥X⊥ = ⊥S⊥
0 .

Therefore, S ⊆ ⊥X⊥ ⊆ ⊥S⊥
0 and S0 ∈ ⊥S⊥. This shows that we can add the high vertex

S0 to S and reduce the proof to Case 1.

Finally, we assume that A is a representation-finite symmetric algebra. For any idempo-
tent element e in A, eAe is also a representation-finite symmetric algebra and the idempotent
embedding functor ι : eAe-mod ↪→ A-mod is fully faithful (see [20, Page 12]). Thus we get
the following corollary of Theorem 3.10.

Corollary 3.14 Let A be a representation-finite symmetric algebra and e an idempotent
element of A. If S is an sms in eAe-mod, then ι(S) extends to an sms in A-mod.
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